Chapter 8, Part B – The Spinal Cord

Ch. 8, Part B - The Spinal Cord and Spinal Nerves

- Overview of spinal cord anatomy and functions
- Spinal meninges
- Internal organization of the cord
- Spinal nerves
- Spinal reflexes

Spinal Cord Functions/Anatomy

Spinal cord functions:
- Conveys *sensory* information to brain
- Conveys *motor* information to PNS
- Reflexively *integrates* sensory and motor information (i.e. decides what to do without asking the brain for help)

Length:
- Extends from medulla to L2 in adults
- 16 to 18 in. long
- About 0.5 in. diameter
Gross Anatomy of the Spinal Cord

Enlargements:
Regions where cord is thicker
- Cervical enlargement
 Fibers to and from arms
- Lumbar enlargement
 Fibers to and from legs

Conus medullaris
Tapered end of the cord
About L1 or L2
Spinal Tap, Spinal Nerve Roots

Spinal tap
- Deliver anesthetics, sample CSF fluid or pressure
- Done below L3 - Cord not present here

Spinal nerves contain two roots.
Spinal nerves are mixed nerves.
Dorsal root - sensory
Ventral root - motor

Gross Anatomy of the Spinal Cord

Dorsal root: Sensory
White matter
Central canal: CSF
Dorsal root ganglion: Sensory neuron cell bodies
Spinal nerve: Mixed
Gray matter
Ventral root: Motor
The Spinal Cord and Spinal Meninges

From outside to inside:
- Dura mater
- Arachnoid (membrane)
- Pia mater

Meninges provide:
- Support
- Stability
- Shock absorption

Sectional Organization of the Cord

Dorsal (posterior)
- Dorsal horn
- Lateral horn
- Posterior median sulcus
- Dorsal root
- Ventricle
- Dorsal root ganglion

Ventral (anterior)
- Ventral horn
- Anterior gray commissure
- Pia mater
- Anterior median fissure
- Ventral root
- Dorsal root ganglion
Gray Matter and Gray Horns

Ventral (anterior) gray horns
- Somatic motor nuclei
- Efferent information to skeletal muscles

Lateral gray horns
- Visceral (autonomic) motor nuclei
- Only in thoracic and lumbar segments

Dorsal (posterior) gray horns
- Sensory area
- Somatic and autonomic nuclei

Spinal Nerves are *Mixed Nerves*
Figure 13.7d

Mixed nerves:
Contain both motor and sensory nerve fibers (axons)
Chapter 8, Part B – The Spinal Cord

Spinal Reflexes

Definition:
- Unconscious, rapid, stereotyped responses to a stimulus
- Involve a reflex arc

Advantages of reflexes - why important?
1. Fast response
 - Don’t have to think about it
2. Predictable
 - Absence indicates damage to N.S.

Reflex Arcs

Components of a reflex arc:
1. Sensory receptor
2. Sensory neuron
3. Integrating center
4. Motor neuron
5. Effector
Spinal Reflexes - Reflex Arc Components

Spinal cord is the **integrating center** ("decision maker") of a spinal **reflex arc**

1. Sensory receptor
 - Responds to stimulus
 - Generates signal to be sent to integrator

2. Sensory neuron
 - Cell body in dorsal root ganglion
 - Carries info to integrating center (spinal cord)
 - Info enters via dorsal root

(Spinal) Reflex Arc (continued)

3. Integrating center = **spinal cord**
 - *Usually* involves interneurons
 Called a polysynaptic reflex
 - *May not* involve interneurons
 Called monosynaptic reflex

4. Motor neuron
 - Transmits impulses to muscle or gland

5. Effector
 - Muscle or gland that responds to motor neuron
 - Effects a change in controlled variable
Components of a Spinal Reflex (Arc)

Muscle Spindle (Stretch) Reflex

A.K.A. knee-jerk or patellar reflex
Receptor (*muscle spindle*) located in muscle
Cord sends excitatory message to *muscle being stretched*
- Adjusts stretch on muscle
- Adjust muscle tone at rest
- Prevents overstretch
- A monosynaptic reflex
Chapter 8, Part B – The Spinal Cord

The Patellar (Knee-jerk) Reflex

Integration and Control of Spinal Reflexes

Higher centers can modify spinal reflexes

- Can inhibit or facilitate reflex patterns
- Allows a few neurons from brain to control complex motor functions
 e.g. Walking, running based on spinal reflexes