Spinal Cord & Spinal Nerves

1. Provide a pathway for impulses
2. Mediate spinal reflexes
3. Integrate sensory and motor impulses
Gross anatomy of the spinal cord

- extends from medulla oblongata in the brainstem to L2
- conus medullaris
 - end of cord at L2
- cauda equina
 - spinal nerve roots that descend through lower part of vertebral canal

Gross anatomy of the spinal cord

- filum terminale
 - extension of pia mater
 - strand of connective tissue
 - anchors cord to sacrum
- 2 enlargements
 - cervical enlargement
 - lumbar enlargement
 - Points of entry/exit for dorsal and ventral roots for limbs
Segmental Anatomy of Spinal Cord

- 31 horizontal segments
 - based on origins of the 31 paired spinal nerves
 - C4, T8, L2, etc.
- segments
 - Designated C1, T7, L2, etc
- dorsal root ganglion
- spinal nerve, formed by fusion of
 - dorsal root
 - ventral root

Spinal Meninges (singular, meninx)

- meningitis…
- dura mater
 - dense irregular CT
- arachnoid mater
 - collagen and elastic fibers
- pia mater
 - thin CT layer
Meningeal spaces

- epidural space
 - fat filled space
 - protects spinal cord
- subdural space
 - thin space ICF
- subarachnoid space
 - filled with CSF
 - CSF absorbs shock, protects the spinal cord
Gray matter
- organized into
 - horns
 - gray commissure
- Contains
 - somas- organized in nuclei (see figure)
 - unmyelinated fibers
 - neuroglia

White matter
- myelinated tracts
 - 3 paired columns (funiculi)
 - Anterior
 - Posterior
 - Lateral
- anterior white commissure
 - connects left and right white matter
Columns

- contain tracts (fasciculi)
 - bundles of neurons with common origins/destinations
- spinal cord tracts are continuous with tracts in the brainstem
- sensory tracts (ascending)
- motor tracts (descending)

Spinal nerves

- 31 paired nerves
- run between CNS and periphery
- are mixed nerves
 - contain both
 - afferent fibers
 - efferent fibers
Spinal Nerve Roots

- ventral (motor) root
- dorsal (sensory) root
- dorsal root ganglion
 - Somas of sensory neurons

Spinal nerves
Connective Tissue coverings of nerves

- epineurium
 - covers entire nerve
 - confluent with the dura mater
- perineurium
 - bundles groups of axons into fascicles
- endoneurium
 - wraps individual axons

Distribution of spinal nerves

- This image is from Netter’s atlas
Distribution of Spinal Nerves for T1 to T12:

- 4 branches (rami)
 - 1. dorsal ramus
 - deep muscles back
 - skin of dorsal trunk
 - 2. ventral ramus
 - Muscles and skin of limbs and anterolateral trunk
 - 3. rami communicantes
 - Visceral receptors
 - Visceral effectors
 - 4. meningeal branch
 - *not visible here
 - Vertebrae
 - vertebral ligaments
 - spinal cord vessels
 - meninges

Sources of sensory input
Destinations of motor output

Dermatomes

- areas of the skin that provides input to a single spinal nerve
- overlap of regions varies
Plexuses

- networks of interconnecting nerves
- formed by the ventral rami
- pictured: brachial plexus

Plexuses

- cervical
- brachial
- lumbar
- sacral
Brachial plexus

Cervical plexus
Lumbar & Sacral Plexus

TABLE 13-2 The Brachial Plexus

<table>
<thead>
<tr>
<th>Nerve(s)</th>
<th>Spinal Segments</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nerve to subclavius</td>
<td>C5-C6</td>
<td>Subclavius muscle</td>
</tr>
<tr>
<td>Dorsal scapular nerve</td>
<td>C5</td>
<td>Rhomboid and levator scapulae muscles</td>
</tr>
<tr>
<td>Long thoracic nerve</td>
<td>C5-T1</td>
<td>Serratus anterior muscle</td>
</tr>
<tr>
<td>Suprascapular nerve</td>
<td>C5, C6</td>
<td>Supraspinatus and infraspinatus muscles; sensory from shoulder joint and scapula</td>
</tr>
<tr>
<td>Pectoral nerves (medial and lateral)</td>
<td>C5, C6</td>
<td>Pectoralis muscles</td>
</tr>
<tr>
<td>Subscapular nerves</td>
<td>C5, C6</td>
<td>Subscapularis and teres major muscles</td>
</tr>
<tr>
<td>Thoracodorsal nerve</td>
<td>C5-C8</td>
<td>Latissimus dorsi muscle</td>
</tr>
<tr>
<td>Axillary nerve</td>
<td>C5, C6</td>
<td>Deltoid and teres minor muscles; sensory from the skin of the shoulder</td>
</tr>
<tr>
<td>Medial antebraclial cutaneous nerve</td>
<td>C5, T1</td>
<td>Sensory from skin over anterior, medial surface of arm and forearm</td>
</tr>
</tbody>
</table>

TABLE 13-3 The Brachial Plexus

<table>
<thead>
<tr>
<th>Nerve(s)</th>
<th>Spinal Segments</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radial nerve</td>
<td>C5-T1</td>
<td>Many extensor muscles on the arm and forearm (brachii, anconaeus, extensor carpi radialis, extensor carpi ulnaris, and brachioradialis muscles); supinator muscle, digital extensor muscles, and abductor pollicis muscle via the deep branch; sensory from skin over the posteioralateral surface of the limb through the posterior brachial cutaneous nerve (arm), posterior antebraclial cutaneous nerve (forearm), and the superficial branch (radial half of hand)</td>
</tr>
<tr>
<td>Musculocutaneous nerve</td>
<td>C5-T1</td>
<td>Flexor muscles on the arm (brachii, triceps, and coracobraclial muscles); sensory from skin over lateral surface of the forearm through the lateral antebraclial cutaneous nerve</td>
</tr>
<tr>
<td>Median nerve</td>
<td>C5-T1</td>
<td>Flexor muscles on the forearm (flexor carpi radialis and palmaris longus muscles); pronator quadratus and pronator teres muscles; digital flexors through the anterior interosseous nerve; sensory from skin over anterolateral surface of the hand</td>
</tr>
<tr>
<td>Ulnar nerve</td>
<td>C6, T1</td>
<td>Flexor carpi ulnaris muscle, flexor digitorum profundus muscle, adductor pollicis muscle, and small digital muscles via the deep branch; sensory from skin over medial surface of the hand through the superficial branch</td>
</tr>
</tbody>
</table>

Lumbar Plexus

- **Intercostal nerve**
- **Hypogastric nerve**
- **Iliinguinal nerve**
- **Genitofemoral nerve**
- **Lateral femoral cutaneous nerve**
- **Femoral nerve**
- **Oburator nerve**
- **Lumbar plexus, anterior view**

Sacral Plexus

- **Lumbosacral trunk**
- **Superior gluteal nerve**
- **Sacral plexus, posterior view**
Intercostal nerves (T1-T12) innervate

- structures of intercostal spaces
 - intercostal muscles
 - intercostal arteries and veins
- abdominal wall muscles
- skin
 - anterolateral trunk
 - posterior trunk
 - axillae
 - posteriomedial arm

Neuronal Pools/Circuit patterns
Neuronal Pools

- located in the CNS
- hundreds exist
- functions (output of neuronal pools)
 - stimulate or depress activity in part of CNS
 - effects of neuronal pool output
 - interpretation of sensory information
 - coordination of motor commands

Divergence

- permits broad distribution of information
- example
 - visual sensory information
Convergence

- several neurons synapse on a single postsynaptic neuron
- example
 - motor neurons controlling respiratory muscles

Serial processing

- linear sequence of neurons
- example
 - Peripheral sensations travelling to CNS
Parallel processing

- several neurons/pools process same info simultaneously
- example
 - reflexes associated with pain

Reverberation

- axon collaterals stimulate presynaptic neuron (example of a positive feedback mechanism)
- function until
 - synaptic fatigue or inhibition of initial neuron occurs
- examples
 - consciousness, memory, muscular coordination, breathing
Neural Reflexes

- automatic response to
 - a specific stimulus
- provide rapid adjustments to homeostatic imbalances
- may be used to assess nervous system function/damage

Reflex arc

- pathway
 - route followed by a series of impulses through the nervous system
- reflex arcs
 - simplest pathways
 - begin at a receptor
 - end at an effector
Events in a neural reflex

Classifications of Reflexes

- **Innate Reflexes**
 - Genetically determined

- **Acquired Reflexes**
 - Learned

- **Somatic Reflexes**
 - Control skeletal muscle contractions
 - Include superficial and stretch reflexes

- **Visceral (Autonomic) Reflexes**
 - Control actions of smooth and cardiac muscles, glands, and adipose tissue

- **Monosynaptic**
 - One synapse

- **Polysynaptic**
 - Multiple synapses (two to several hundred)

- **Spinal Reflexes**
 - Processing in the spinal cord

- **Cranial Reflexes**
 - Processing in the brain
Monosynaptic reflexes

- little delay in pathway
- control rapid responses to specific stimuli
- stretch reflex
 - rapid stretch
 - elicits contraction
- Receptor
 - muscle spindle

Muscle spindles

- monitor tension in muscles
- stretch results in contraction
- rapid stretch -> rapid contraction
Polysynaptic reflexes

- complicated responses
- interneurons control multiple muscle groups involved
- stimulation of some muscles and inhibition of others
- flexor reflex pictured

Polysynaptic reflexes; characteristics

- crossed extensor reflex pictured here
- pools of interneurons are involved
- Intersegmental
- reciprocal inhibition
- reverberating circuits prolong response
- multiple reflexes provide the response
Voluntary movements and Reflex motor patterns

- Human movements are due to sets of neurons
- These movements are either
 - Reflexive (below consciousness)
 - Initiated by brain (voluntary)
- Preexisting patterns exist and are handled by neuronal pools in the spinal cord
 - Walking, jumping
 - May be modified by brain

Reinforcement/Inhibition

- Read this section
Reflexes – clinically used for diagnostic testing of nervous system

- Sensory function
- Motor function